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We have identified the Cranfill multifluid turbulence model (Cranfill, 1992) as a starting point
for development of subgrid models of instability, turbulent and mixing processes.  We have
differenced the closed system of equations in conservation form, and coded them in the object-
oriented hydrodynamics code FLAG, which is to be used as a testbed for such models.

Introduction
There are a number of physics problems in which

the mixing of fluids under acceleration involves
multiple processes and flow regimes, including but not
limited to fully-developed turbulence.  For instance,
such "laminar mixing" processes as Rayleigh-Taylor,
Richtmyer-Meshkov and Kelvin-Helmholtz instabilities
may be significant both in determining the manner of
the onset of turbulence and as mixing processes in their
own right.  Supernovae, ICF targets, and many types of
combustion, turbomachinery and explosion problems
are examples of systems which can only be understood
by including both turbulent and laminar mixing
phenomena.

Since laminar mixing processes are by definition
not turbulent, and due to other characteristics they
possess such as anisotropy and low entropy (as shown
by the possibility of demixing; see Smeeton and
Youngs, 1988), we should not expect to predict their
behavior with subgrid models of isotropic turbulence,
such as the widely used two-equation models.  In order
to incorporate information about anisotropy and for
other reasons, it is attractive to marry the equations of
multifluid hydrodynamics with a turbulence model.
This approach has been explored by several workers in
the field (see for instance Besnard et al., 1989; Youngs,
1989; and Cranfill, 1991).  We find the multifluid
approach particularly attractive for modeling the
laminar mixing processes because, by allowing each
constituent to have its own velocity field, we can model
segregation of materials, anisotropy, partial reversibility
(demixing) and mass transport (mix) by streaming,
without explicitly resolving the subgrid-scale structure
of the interface and mixing region.

We are developing mix models of the hybrid
(multifluid–turbulence) type, and testing them in a
research code.  As a theoretical starting point for this
work we have adopted Cranfill's (1992) improved
model.  This is a closed, internally consistent set of
equations which models both turbulence and the mutual
interpenetration of fluids.  We have differenced the
Cranfill model and implemented it in the object-
oriented Lagrange hydrodynamics code FLAG.  We
intend to develop new models as variants of or
additions to the Cranfill model, testing them in the
code.
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Figure 1.  Schematic diagram of the Cranfill model.
Unboxed text identifies physical processes that are
or could be accounted for in the model.  "Extra
physics" refers to coupling between fluid dynamics
and other physical processes that may be acting,
e. g., reaction energy in a combustion problem.  Our
research objective is to examine the adequacy of the
model to describe all these processes, and improve it
where appropriate and feasible.

The Cranfill multifluid turbulence model

Model philosophy
Cranfill (1992) decomposed the fluid properties

into three parts:  the mean flow, described by Navier-
Stokes equations; "ordered convective" turbulence,
modeled by his multifluid interpenetration equations;
and "disordered diffusive" turbulence, which is
described by a two-equation (k-l) turbulence model.
The "ordered convective" turbulence is what we have
called "laminar mix," that is, flow which is disordered
but not well mixed, so that the different fluids present
have different mean velocities.  An example of this is
the early stage of Rayleigh-Taylor instability, in which
well-defined bubbles of one fluid and spikes of the
other are moving past each other.  "Disordered
diffusive" turbulence is what we might call fully-
developed turbulence; the system is well mixed, so that
all materials have essentially the same mean velocity
and demixing is not possible under the action of long-
wavelength driving forces.  In such a mixture the
motions of different fluids are so strongly coupled that



it is a good approximation to regard them all as being
equally turbulent (in a sense which is made clear in the
model details).  For this reason, a single turbulent
energy field k is applied to the entire system, rather than
keeping a distinct turbulent field for each material.

The model equations are derived by Favre
averaging the fluid equations and using modeling
assumptions to close the system.  The rigor of the
derivation from fluid equations guarantees conservation
and other desirable constraints, which we will preserve
in our variant models.  On the other hand, the modeling
assumptions can presumably be improved without
violating important physical principles.  We will
develop and test improved models of individual
phenomena by replacing some of the terms or equations
which embody those assumptions.

Model equations
For full details of the model equations and their

derivation, the reader is referred to Cranfill's (1992)
report.

In our initial form of the coded model, we have
omitted terms depending on molecular viscosity η and
thermal conductivity κ.   We have, however, kept the
dissipation of disordered turbulence εd, in conformity
with common practice in turbulence modeling.  In
conservation form, the differential equations of the
model can be expressed as follows:

Bulk fluid equations.
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In these equations, M  and   
r
p  are the total mass and

momentum in a control volume;   
r
Fo ,   

r
Fd  and   

r
FP  are the

forces on that volume due to ordered and disordered
turbulence and pressure; Fluxo

I  and Fluxd
I  are energy

fluxes into the control volume due to ordered and
disordered turbulence;   

r
u  is the mass-weighted mean

velocity;   
r
w  is the drift velocity, defined as the

difference between the volume-weighted mean velocity
and   

r
u ;   Work P u,

r( )  and   Work P w,
r( )  are the pressure

work done by the fluid corresponding to   
r
u  and   

r
w ; and

Dissip d i→( ) is the rate of energy dissipation from
disordered turbulent energy to internal energy.  The
convective or Lagrangian derivative is represented by

the notation   d dt t u≡ + ⋅ ∇∂ ∂ r r
.

Ordered convective fluid properties.
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Here M j  is the mass belonging to material j in the

control volume; 
  
r r
p M wj j j≡  is the drift momentum of j,

where the material drift velocity 
  

r
wj  is defined as its

volume-weighted mean velocity minus   
r
u ; 
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r
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r
Fdrag j,  are the forces on j due to ordered and disordered

turbulence and intermaterial drag; and f j  and x j  are

the volume and mass fractions of material j.
Disordered diffusive fluid properties.
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These are the new variables in this two-equation
turbulence model : Kd  and L  are the energy and
characteristic length scale of disordered diffusive

turbulent flow in the control volume; Fluxo
Kd , Fluxd

Kd ,

Fluxo
L  and Fluxd

L  are the fluxes of those quantities into
the control volume due to ordered and disordered
turbulent flows;   Work udR ,

r( ) and   Work wdR ,
r( )  are

work done by the fluid due to the disordered turbulent
Reynolds stress Rd ; Dissip o d→( )  is the rate of
energy dissipation from ordered to disordered turbulent
energy; V  is the volume of the control volume; ω  is a
characteristic rate for the intermaterial drag forces,
modeled as a function of Ko , Kd  and L ; and   C ol  and
Cω  are adjustable dimensionless constants.

Model implementation in the FLAG code
In order to be useful as a testbed for putative

subgrid mix models, the research code should satisfy
several important criteria.  It must be flexible enough
not to seriously constrain the physics; it should be easy
to modify quickly and reliably; and it should use data
structures and routines which support the description of
mixtures and multifluid flow.  It should also provide as
many as possible of the utilities and physics capabilities
needed to build mixing models, such as mixed EOS
treatments, advection, accurate hydro and arbitrary
dimensionality (to enable us to test the same models
and coding in one, two and three dimensions).



We have experience in the installation of a
multifluid model into a mature code which did not have
all these characteristics.  In particular, the original data
structures, in which most physics variables were
centered on a mesh cell, had to be replaced with a
scheme in which many variables are centered on a
material component of a cell.  This necessitated
inserting a new data structure between the cells and
their elemental constituents, so that each zone contained
one or more materials, and each material contained one
or more constituents.  The result is that hundreds of
routines and tens of thousands of lines of code are
affected.  This upgrade will be a major code revision by
the time it is complete.

By contrast, the FLAG code (Burton, 1992b) is
well-suited to this project.  Its object-oriented
architecture and hierarchical database make it
extremely modular and flexible.  It is easy to modify
quickly and reliably, and its data structures and routines
were designed from the outset to describe mixtures of
materials.

FLAG contains an accurate hydro package (Burton,
1990a; Burton, 1990b; Burton, 1992a; Burton, 1994a;
Burton, 1994b), and pressure– and temperature–
equilibrium routines for the effective EOS of mixtures.
It runs in arbitrary dimensionality.  An advection
capability is being developed.

For all of these reasons, we identified FLAG as the
most suitable research code for this project.  To begin
with, we differenced the Cranfill equations in
conservation form.  Then, in spite of our lack of direct
substantial experience with FLAG, we were able to
code the Cranfill model in three weeks' time.  The new
package is modular, so that we altered fewer than 50
lines of existing source files (subroutines and
dictionaries).  By utilizing and creating polymorphic
routines for geometry-dependent functions, we wrote
purely dimensionality-independent physics routines; the
new package will run in one, two or three dimensions.

We made extensive use of pre-existing reusable
functions and data types, but we also extended the
code's object-oriented structure by introducing new
reusable types, classes and functions.  For instance, a
mix calculation will use multiple objects belonging to
the Multifluid class and one object of the Turbulence
class, corresponding to the multiple fluids and single
turbulent energy field of the Cranfill model.  The new
classes have their own forms of preexisting
polymorphic functions such as FORCE and WORK,
and new ones such as MIX. The online user manual
(html files) was automatically updated to include the
new classes, functions and variables. Their definitions
and documentation are specified in dictionary files; a
typical entry (abbreviated slightly for pedagogical
reasons) is given in Figure 2.

class( Turbulence "Disordered turbulence as a material"
(from (MatBasic)
 proc (CleanState ConstitTb
       FORCE      undefined
       ETrans     ETransTb
       MIX        MixTb
       RATE       none
       WORK       WorkTb    )
 var (
 $ Constants
  comega   "Constant C sub omega"                ( TYPE r_scal INIT InitComega)
 $ Phases
  hkd      "Disordered turbulent energy k d"     ( TYPE r_H    INIT 0. )
  hko      "Ordered turbulent energy k o"        ( TYPE r_H    INIT 0. )
  hl       "Turbulent length l"                  ( TYPE r_H    INIT 0. )
  hepsd    "Disordered dissip. rate epsilon d"   ( TYPE r_H    INIT 0. )
  hreyo    "Ordered Reynolds stress R o"         ( TYPE r_K6H  INIT 0. )
  hreyd    "Disordered Reynolds stress R d"      ( TYPE r_K6H  INIT 0. )
 $ Material nodes
  ow       "Vol.-weighted mean drift velocity w" ( TYPE r_Ko   INIT 0. )
  oso      "Ordered turb. int. energy flux s o"  ( TYPE r_Ko   INIT 0. )
  osd      "Disord. turb. int. energy flux s d"  ( TYPE r_Ko   INIT 0. )
  odd      "Disord. turb. diffusion tensor D d"  ( TYPE r_K6o  INIT 0. )
 )))

Figure 2.  Dictionary file entry defining Turbulence class (abbreviated).
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Figure 3.  Schematic diagram of message passing among nodes in a representative portion of FLAG's
hierarchical database; see text for details.

Physics and other data in FLAG are arranged in a
hierarchical database.  (See Figure 3.)  This allows the
code to use multiple instantiations of the same variable,
defining non-overlapping scopes for each copy.  (As an
example, the same EOS parameters can have different
values, or even different variable lists and array shapes,
in different materials.)  In a typical routine, most of the
data used (besides temporaries) is from a single node of
the hierarchy, but data above that node can also be
accessed.  A routine can also broadcast messages—
effectively polymorphic function calls—to a subtree of
the hierarchy.  For instance, when the message
"CycleHydro" is broadcast, the hydro package responds
by executing its cycling function.  The other physics
packages do not, because they have no polymorphic
form of the "CycleHydro" function.  When the hydro
package broadcasts "Grad" from the Geometry node,
only that mesh type1 responds which is instantiated in
the problem, and the appropriate gradient routine is
executed.  The hydro package also broadcasts a

                                                                        
1In principle, there can be multiple meshes in a problem, in
which case all those instantiated will respond by calling the
appropriate routine.

"FORCE" message from the Mesh node, to which each
instantiated material responds with the appropriate
subroutine call.  In this case, the Turbulence and
Multifluid nodes in the hierarchy calculate all the
pressure and turbulent forces which appear in equations
(2) and (5) above, in such a way that each is
automatically applied to the proper material(s).

Research plans
This code package is one of the initial tasks in an

ambitious, multi-year research project involving several
researchers.  We intend to assimilate information from
theory, experiments and direct numerical simulation
(DNS) to understand and characterize the numerous
phenomena which are important in mixing processes.
These include, for example, Rayleigh-Taylor,
Richtmyer-Meshkov and Kelvin-Helmholtz
instabilities, interactions between turbulence and
shocks, other compressibility effects, transition to
turbulence, loss of memory of initial conditions and
coupling to other physics processes.  While a perfectly
general subgrid model is desirable, it may be more
practical to devise different theoretical or
phenomenological models for different flow regimes,



with well-behaved transitions between regimes.  This
has been done in other complicated fluid dynamics
problems; for example, see Figure 4 for an example
(Yadigaroglu, 1995) from a commercial multiphase
flow code (RELAP5/MOD2).

Figure 4. Flow regime selection logic used in
RELAP5/MOD2 for vertical flow.

In any case, proposed models will be tested in the
FLAG mix package, and iterated toward the most
successful forms.  We welcome the interest and
participation of friendly users, as well as theoretical
ideas and experimental and DNS data to motivate new
and better subgrid models.
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